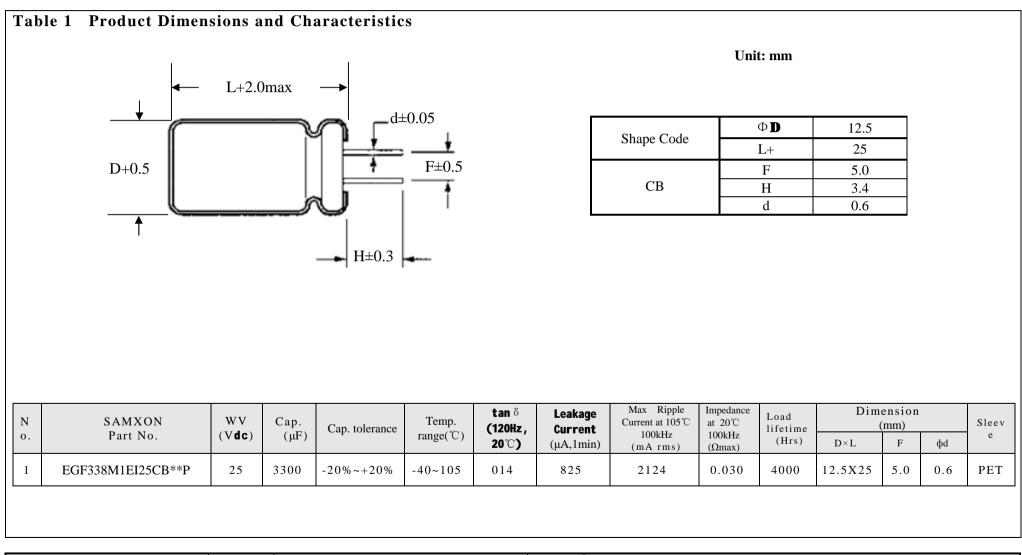


SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): DATE: (日期):2018-09-10


CATEGORY (品名)	:	ALU	JMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	:	GF	25V3300µF(q12.5x25)
VERSION (版本)	:	01	
Customer P/N	:		
SUPPLIER	:		

SUPPL	IER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
孟庆庆	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	SPECIFICATION GF SERIES						ALTERNATION HISTORY RECORDS				
Rev.	Date	GF SE Mark	RIES Pa	0 A	Contents	I	Purpose	Drafter	Approver		
KCV.	Date	IVIAIK	ra	ge	Contents		uipose	Dianei	Approver		
	Version		01					Page	1		

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION	
	GF SERIES	

	Version	01		Page	2
--	---------	----	--	------	---

 Application Part Number System Construction Characteristics Rated voltage & Surge voltage 	4 4 5 5~10
 Construction Characteristics Rated voltage & Surge voltage 	5
 Characteristics .1 Rated voltage & Surge voltage 	
.1 Rated voltage & Surge voltage	5~10
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 $\tan \delta$	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)	1
5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	d 11
Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

1. Application

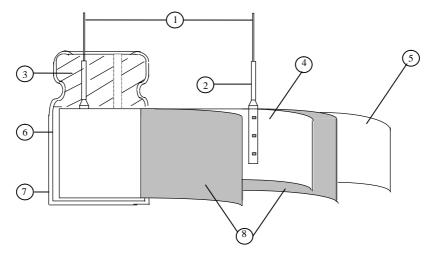
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 5 D11 S 0 м 1 н TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Code Case Size Feature Code SAMXON Product Li ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co 3 B 5 1 4 C 5 D 3 E RR For internal use only Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A ±15 L JV4AK7L8MN 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EG м 1D ±20 20 105 3.5mm Pitch тν Sleeve Material Co FG 1 46 46.5 18 18.5 20 22 ? EGE 25 1E PET Р 11 5.0mm Pitch тс 30 2.2 225 Ν ±30 32 13 ERS ERF ERL ERR Lead Cut & Form 35 3.3 335 1V -40 w 22 25 30 34 35 40 42 45 40 1G OP WQ R 46S T U 8X Z СВ-Туре СВ 4.7 475 42 1M -20 0 А FR 50 1H ERE ERD ERH EBD СЕ-Туре CE 10 106 57 1L -20 +10 С 63 1J HE-Type HE 22 226 71 **1**S 51 3.5 76 80 ER. 75 1**T** 6 ERE ERC EFA ENP -20 +40 × KD-Type ĸD 336 33 80 1K 85 1R 90 100 -20 +50 FD-Type FD s Z Costing Ex 454 05 7 77 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13.5 1C 20 20.5 7 30.7 75 47 476 90 19 ENH ERV ERV ELP EAP EOP 100 2A -10 0 ЕН-Туре EΗ в 107 100 120 20 125 2B PCB Termial -10 +20 220 227 v 150 2Z 160 2C sw 330 337 -10 +30 Q 180 2P 200 2D Snap-in SX EKP EEP 470 477 -10 +50 215 22 т EFP ESP 220 2N 1C 20 25 2J 30 3A 35 3E sz 2200 228 -5 +10 230 23 Е EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB 250 2E Lug SG 22000 229 -5 +15 275 2Т F 05 300 21 33000 339 310 2R -5 +20 3 G 06 315 2F 50 80 1L 1K 1M 1P 47000 479 330 2U 0 +20 R Т5 2V 350 100000 10T Screw 360 2X 0 +30 0 т6 VNS 375 2Q 150000 15T 40 50 55 10 1R 1E 1S 1F 1T 1U 0 +50 385 2Y I. D5 400 2G 220000 22T +5 +15 2M z 420 D6 VZS 450 2W 330000 ззт +5 D 500 2H 1000000 550 25 10M +10 +50 26 Y 600 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5
v crsion	01	I age	5

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	ITEM				PERFC	RMAN	CE			
	Rated voltage							1	1	[]
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	80
l.1		SV (V.DC)	8	13	20	32	44	63	79	100
	Surge voltage (SV)									
1.2	Nominal capacitance (Tolerance)	<pre><condition> Measuring F Measuring V Measuring T </condition></pre> <pre></pre> <	requency oltage 'emperat	: N ure : 20	0 Hz \pm 12 ot more to 0 ± 2 °C apacitance	han 0.5V				
1.3	Leakage current	<condition></condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in seminutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1							eries for 2	
4.4	tan δ	See 4.2, Norr < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria> Refer to Table 1</criteria></condition>							
4.5	Terminal strength	0.51	ength of capacitor rength of apacitor,	, applied Termina applied f nds, and d wire less	force to b force to b then ber Tens	ent the te	erminal (1 0° to its	l~4 mm f original j Bending (kg 2.5 (f	from the	rubber) fo
		< Criteri No notic		anges sh	all be for	and, no b	reakage	or loosen	ness at the	e terminal

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<condition></condition>									
		STEP Testing Tem		ng Tempe	rature(°C))	Time				
		1	1 20±2		2	Time	Time to reach thermal equilibrium			ım	
		2		-40(-25)	± 3	Time	to reach	thermal of	equilibriu	ım	
		3		20±2		Time	to reach	thermal of	equilibriu	ım	
		4		105±	2		to reach		-		
		5		20 ± 2			to reach				
		<criteria></criteria>	l						1		
		a. tan δ shall	be with	in the lim	it of Item	4.4The le	eakage cu	irrent me	easured sl	hall not	
	T (more than 8 times of its specified value.									
	Temperature characteristi	b. In step 5, ta			nin the lin	nit of Iter	n 4.4The	leakage	current	shall not	
4.6	characteristi	more than the	-								
1.0	05	c. At-40°C (-2 table.	25℃), iı	mpedance	(z) ratio s	shall not	exceed th	e value o	of the fol	lowing	
		Working Voltag	ge (V)	6.3	10	16	25	35	50	63	
		Z-25°C/Z+20	Э°С	4	3	2	2	2	2	2	
		Z-40°C/Z+20	D°C	8	6	4	3	3	3	3	
		Working Voltag	ge (V)	80]						
		Z-25°C/Z+20		2							
		Z-40°C/Z+20)°C	3							
		For capacitance	e value	> 1000 µ	F, Add 0.	5 per and	ther 1000)µF for	Z-25/Z+	20℃,	
					Add 1.0) per ano	ther 1000	μ F for 2	Z-40°C/Z	Z+20℃.	
		Capacitance, tar	$n\delta$, and	d impedar	ice shall b	e measur	red at 120	Hz.			
		<condition> According to II</condition>	EC6038	84-4No.4.	13 method	ls, The ca	apacitor is	s stored a	at a tempe	erature of	
		According to IEC60384-4No.4.13 methods, The capacitor is stored at a temperature of 105° C ± 2 with DC bias voltage plus the rated ripple current for Table 1 . (The sum of									
		DC and ripple	peak v	voltage sł	nall not e	xceed the	e rated w	vorking	voltage)	Then the	
		product should				covering	time at at	mospher	ic condit	ions. The	
	Load	result should m	neet the	following	g table:						
4.7	life	<criteria></criteria>	atia alta	11	a fallarin	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	monto				
	test	The characteri					be satisfi	ad		7	
		Leakage								_	
				lange			initial va		1 1	_	
		$\tan \delta$			Not more			•		_	
		Appeara	ince		There sh	all be no	leakage (or electro	olyte.		
		<condition></condition>									
			are then	stored wi	th no volta	age applie	ed at a ter	mperatur	e of 105	±2℃ for	
		The capacitors are then stored with no voltage applied at a temperature of 105 ± 2 °C for $1000+48/0$ hours. Following this period the capacitors shall be removed from the test									
		chamber and b									
			cted to	a series	limiting r	esistor(11	$x \pm 100 \Omega$) with I	D.C. rated	d voltage	
	Shelf	shall be conne									
4.8	life	applied for 30r	nin. Aft	ter which	the capaci	tors shal	l be disch	arged, a	nd then,	tested the	
4.8			nin. Aft	ter which	the capaci	tors shal	l be disch	arged, a	nd then,	tested the	
4.8	life	applied for 30r	nin. Aft	ter which	the capaci	itors shal	l be disch	arged, a	nd then, t	tested the	
4.8	life	applied for 30r	nin. Aft	ter which	the capaci	itors shal	l be disch	arged, a	nd then, 1	tested the	

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

ı			
		<criteria></criteria>	
		The characteristic shall meet th	
	Shelf	Leakage current	Value in 4.3 shall be satisfied
4.8	life	Capacitance Change	Within $\pm 25\%$ of initial value.
	test	tan δ	Not more than 150% of the specified value.
		Appearance	There shall be no leakage of electrolyte.
		-	tored more than 1 year, the leakage current may
		11.0	through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submitter followed discharge of 5 min 30 The test temperature shall be C_R :Nominal Capacitance (μ <criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	15~35℃.
4.10	Vibration test	perpendicular directions. Vibration frequency ran, Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter grain in place with a bracket. 4mm or less Image: Criteria> After the test, the following itter Inner construction No No	: 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute eater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

X 7	01	Ъ	0
V ersion	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

		(Conditions)				
		<condition> The capacitor shall be tes</condition>	ted under the followin	a conditions:		
		Soldering temperature	$: 245\pm3^{\circ}C$	-		
		Dipping depth	: 243±3 C			
4.1.1	Solderability	Dipping speed	: 25±2.5m	m/s		
4.11	test	Dipping speed Dipping time	: 25±2.5m			
		<criteria></criteria>	. 5±0.55			
			A minim	um of 95% of the surface being		
		Coating quality	immersed	-		
		<condition></condition>				
		Terminals of the capacito	r shall be immersed in	nto solder bath at 260 ± 5 °C for $10\pm$		
		1 seconds or $400 \pm 10^{\circ}$ C for	50^{+1} seconds to 1.5~2	.0mm from the body of capacitor .		
			•	l temperature and normal humidity		
	Resistance to	for 1~2 hours before mea		in temperature and normal numberry		
4.12	solder heat	<criteria></criteria>				
	test	Leakage current	Not more than	the specified value.		
		Capacitance Change	Within ±10%	o of initial value.		
		tan δ	Not more than	the specified value.		
		Appearance	There shall be	no leakage of electrolyte.		
		<condition></condition>				
			rding to IEC60384-4N	0.4.7 methods, capacitor shall be		
		placed in an oven, the con				
		Т	Time			
		(1)+20°C		≤ 3 Minutes		
		(2)Rated low temper	30 ± 2 Minutes			
4.13	Change of temperature	(3)Rated high tempe	30 ± 2 Minutes			
4.15	test	(1) to $(3)=1$ cycle, to				
		< <u>Criteria></u>				
		The characteristic shall m	neet the following requ	irement		
		Leakage current	Not more than the			
		tan δ	Not more than the	•		
		Appearance		leakage of electrolyte.		
		<condition></condition>				
		Humidity Test:				
		According to IEC60384-	4No.4.12 methods, cap	bacitor shall be exposed for 500 ± 8		
		hours in an atmosphere o	f 90~95%R H .at 40 \pm	2° C, the characteristic change shall		
		meet the following requir	rement.			
		< <u>Criteria></u>	-			
4.14	Damp heat	Leakage current	Not more than the sp			
7.14	test	Capacitance Change	Within $\pm 20\%$ of in			
		tan δ		of the specified value.		
		Appearance	There shall be no lea	kage of electrolyte.		

Version

01

Page

9

Version

01

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

Page

10

4.15	Vent test	22.4 or lessOver 22.41 <criteria>The vent shall operate with no</criteria>	th its polar ble is appli rent (A) 1 0 dangerous	ity reversed ed.	to a DC po	ower source. Ther
4.16	Maximum permissible (ripple current)	pieces of the capacitor and/or c <condition> The maximum permissible rip at 120Hz and can be applied Table-1 The combined value of D.C - rated voltage and shall not re Frequency Multipliers: Coefficient Freq. (Hz) Cap. (μ F) ~180 220~560 680~1800 2200~3900 4700</condition>	pple curren at maximu voltage and	m operating I the peak A	g temperatu	re

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-OA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Theavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
	Polybrominated biphenyls (PBB)
Brominated organic	Polybrominated diphenylethers(PBDE) (including
	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	oounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20 °C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
 - A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	Page	12
------------	------	----

SAMXON

(6) Wiring Near the Pressure Relief Vent
Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas
exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7) Circuit Board patterns Under the Capacitor
Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
(8) Screw Terminal Capacitor Mounting
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.
Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6 Electrical Isolation of the Capacitor
Completely isolate the capacitor as follows.
(1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
(2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
(2) Detween the oxide mountaing community (on 1 Gpcs) and the anode terminal, endode terminal, and other enount paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve
The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the
capacitor.
The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION!
Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open
circuits which could occur during use.
(1) Provide protection circuits and protection devices to allow safe failure modes.
(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
2.Capacitor Handling Techniques
2.1 Considerations Before Using
(1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
with a resistor with a value of about $1k\Omega$.
(3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
rated voltage in series with a resistor of approximately $1k\Omega$.
(4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
(5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
result.
2.2 Capacitor Insertion
(1) Verify the correct capacitance and rated voltage of the capacitor.
(2) Verify the correct polarity of the capacitor before inserting.
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
capacitor.
For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
2.3 Manual Soldering
(1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
(2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
(3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
(4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
() is the total ing the up of the solutioning non-to-the tup expected, to provent moting of the vinity sector.
2.4 Flow Soldering
(1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.

- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----